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Abstract 
Climate change is expected to alter biotic interactions, and may lead to temporal and spatial 
mismatches of interacting species. Although the importance of interactions for climate change 
risk assessments is increasingly acknowledged in observational and experimental studies, 
biotic interactions are still rarely incorporated in species distribution models. We assessed the 
potential impacts of climate change on the obligate interaction between Aeshna viridis and its 
egg-laying plant Stratiotes aloides in Europe, based on an ensemble modelling technique. We 
compared three different approaches for incorporating biotic interactions in distribution 
models: (1) We separately modelled each species based on climatic information, and 
intersected the future range overlap (‘overlap approach’). (2) We modelled the potential future 
distribution of A. viridis with the projected occurrence probability of S. aloides as further 
predictor in addition to climate (‘explanatory variable approach’). (3) We calibrated the model 
of A. viridis in the current range of S. aloides and multiplied the future occurrence 
probabilities of both species (‘reference area approach’). Subsequently, all approaches were 
compared to a single species model of A. viridis without interactions. All approaches 
projected a range expansion for A. viridis. Model performance on test data and amount of 
range gain differed depending on the biotic interaction approach. All interaction approaches 
yielded lower range gains (up to 667% lower) than the model without interaction. Regarding 
the contribution of algorithm and approach to the overall uncertainty, the main part of 
explained variation stems from the modelling algorithm, and only a small part is attributed to 
the modelling approach. The comparison of the no-interaction model with the three 
interaction approaches emphasizes the importance of including obligate biotic interactions in 
projective species distribution modelling. We recommend the use of the ‘reference area 
approach’ as this method allows a separation of the effect of climate and occurrence of host 
plant. 
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Introduction 
On-going climate change is a driving factor for species range shifts (e.g. [1]–[3]). Expected 
range changes are often assessed by climate envelope models, which relate species’ 
occurrences to environmental variables [4], [5]. Such models can be projected into the future 
and used to detect suitable future habitats of a species and indicate potential range changes 



[6]. However, the restriction to climatic variables has been criticized [7], [8] and calls for the 
consideration of other factors determining species distributions such as biotic interactions [9]. 

Climate change is expected to alter biotic interactions and thereby to influence species range 
shifts both directly and indirectly. Positive changes, such as an escape from parasites or 
predators are possible [10] allowing some species to exploit a wider range of environments 
providing the opportunity to spread faster and in larger numbers into new areas. On the other 
hand, diverging influences on interacting species, such as a range contraction of the essential 
species, can hinder range expansions of the dependent species into new suitable areas 
although climatic suitability is expected (e.g. [11]). Observations and experimental studies on 
interactions in times of climate change are increasingly conducted (e.g. [12], [13]). However, 
methods to integrate interactions in species distribution modelling are still rarely implemented 
so far (but see [9], [11]), and no comprehensive analysis on how to best represent biotic 
interactions in species distribution models has been conducted. 

Here, we analysed the interaction between a dragonfly, the green hawker (Aeshna viridis 
Eversmann, 1836), which is protected in the European Union under the EU Habitats 
Directive, Annex IV, and its egg-laying plant water soldier (Stratiotes aloides L.). In Europe, 
water soldier is nearly the only egg-laying plant of A. viridis, whereas this plant plays no role 
for reproduction in the Asian populations of the dragonfly. The restriction to S. aloides in 
Europe is advantageous for the dragonfly larvae as the spiny leaves of the plant provide 
shelter against fish predation [14]. Additionally, intra-guild predation and interference 
competition against other dragonfly larvae is reduced [15]. S. aloides has declined during the 
last decades in Europe, mainly as a consequence of eutrophication, light competition, and 
multiple environmental stressors resulting from water pollution [16]. With the decrease of the 
egg-laying plant, the dragonfly has disappeared from large parts of its European distribution 
and is at present highly endangered in Europe and listed in the Red Data Books of e.g. The 
Netherlands, Germany and Finland. 

Based on the current European distribution of both species bioclimatic envelope models were 
developed. We applied three different approaches to consider the species’ obligate biotic 
interaction. First, we applied an approach that intersects the projected future distributions of 
both species (‘overlap approach’). Second, we used the current and future projected 
occurrence probabilities of S. aloides as additional explanatory variable for the occurrence of 
A. viridis (‘explanatory variable approach’) (similar to [9]). As third approach we restricted 
the climatic reference area for A. viridis to where the egg-laying plant is currently present 
(‘reference area approach’) (similar to [11]). We hypothesized that these three approaches 
differ considerably in their performance and in the projected extent of range change from the 
model without interaction and among each other. In particular, we expected a higher model 
performance and a lesser range change with the consideration of biotic interactions. In 
addition, our a priori expectation was that spatial mismatches between the dragonfly and its 
egg-laying plant might occur in the future. 
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Materials and Methods 

Species 



The dragonfly A. viridis inhabits marshlands, ditches and lakes with sizeable masses of S. 
aloides in the Continental, Atlantic and Boreal biogeographical region of Europe (Figure 1A). 
Due to its habitat specialisation, this species is scarce and under threat in much of its 
European range. A. viridis is listed in Annex IV of the European Union Habitats Directive and 
therefore EU-wide protected, but is also protected by national law or under special 
conservation concern. Flight season is from late June onwards to early October. The species is 
most abundant in August [17]. 

 
Figure 1 
Current distribution of A) Aeshna viridis and B) Stratiotes aloides in Europe [21], [22]. 

The water plant S. aloides inhabits standing or slow-flowing, meso-eutrophic waters [18] in 
the same biogeographical regions as A. viridis, with small outposts in the Mediterranean 
region (Figure 1B). It exists in the shallow parts of the littoral zone as an emerged form and in 
deeper parts as a submerged form. During the vegetation cycle translocations of individuals 
between water bottom and surface occurs [14]. S. aloides can be used as an indicator of 
valuable habitat in terms of high macro-arthropod diversity and species richness [19], [20], 
and the occurrence of A. viridis further increases the conservation value of these plant 
populations [19]. 

Species and Climate Data 

Information on the current distribution of A. viridis was retrieved from the EIONET 
(European Environment Information and Observation Network) Central Data Repository 
server [21]. The data stem from the European reporting due in 2007 pursuant to Article 17 of 
the Habitats Directive. They are available for 25 EU countries in different spatial resolutions. 
The distribution of S. aloides was scanned from a map in the Atlas of North European 
vascular plants: north of the tropic of cancer [22] and geo-referenced in a Geographic 
Information System (ArcGIS 9.3.1) integrating the distribution data in our 10′ (arcminutes) 
grid. Distribution data of both species were provided as presence-absence data with 9932 
presence points for S. aloides and 658 presence points for A. viridis. These distribution data 
were reported by the member states of the European Union Habitats Directive in 2007 (25 EU 
members). Each member has an obligation to report the distribution and state of species and 
habitat types protected by the Habitats Directive every six years. 



Current and potential future European climate was quantified on a 10′ (arcminutes) grid from 
interpolated observed and future simulated climate data [23]. Future projections were based 
on the intermediate BAMBU (Business As Might Be Usual, A2) scenario [24], developed for 
the European project ALARM [25]. The future projection is driven by the HadCM3 climate 
model for the time period 2021–50. The observed climate data for model calibration cover the 
time period 1971–2000 and were taken from the ALARM dataset. Only one climate model 
and one emission scenario were chosen to exemplarily illustrate the application of biotic 
interaction approaches, although we are aware that climate models and scenarios differ among 
each other and therefore influence modelling results [26], [27]. 

The following climatic variables were used in species distribution modelling both for the 
dragonfly and the egg-laying plant covering the necessary ecological conditions for survival 
and reproduction during the activity period of the dragonfly and the vegetation period of the 
plant: mean monthly precipitation during the activity period of the adult dragonfly (May–
August, mm), mean monthly temperature during the activity period of the adult dragonfly 
(May–August, °C), precipitation sum in the vegetation period (March–September, mm), sum 
of equilibrium evapotranspiration in the vegetation period (March–September, mm), 
maximum temperature of the warmest month of the year (°C), minimum temperature of the 
coldest month of the year (°C). Additionally, the projected current and potential future 
occurrence probabilities of S. aloides in Europe were used as explanatory variable. The 
average value of the projected current occurrence probability amounts to 0.35. On a local 
scale the existence of suitable water bodies would be additionally relevant for the occurrence 
of A. viridis. However, on the applied spatial scale (ca. 20×20 km) together with the 
preference of S. aloides for small, nutrient-rich water bodies, such as drainage ditches [18] it 
can be assumed that a neglect of this would be less problematic in future projections. 

Species Distribution Modelling 

We used the ensemble modelling approach of BIOMOD [28], [29] with nine different 
modelling algorithms (generalised linear models (GLM), generalised additive models (GAM), 
multivariate adaptive regression splines (MARS), classification tree analysis (CTA), flexible 
discriminant analysis (FDA), artificial neural networks (ANN), generalised boosted models 
(GBM), random forests (RF), and surface range envelope (SRE)). BIOMOD allows the 
calculation of an ensemble prediction of all algorithms, reducing the uncertainties arising 
from using only a single algorithm. It provides several methods to calculate the ensemble, 
such as probability mean and weighted mean. We here used the probability mean, which has 
been reported to provide more robust predictions than other consensus methods [30]. 
Additionally, BIOMOD provides an assessment of variable importance based on the extent to 
which model predictions change when a given variable is randomized [31]. 

The models were trained using observed current species distribution data and observed 
climate data (reference period 1971–2000). The results were internally validated with a one-
time data splitting method [32], randomly partitioning the data set in 70% training and 30% 
test data. We used the AUC (area under the receiver operating characteristic curve) as model 
performance criterion to measure the overall model discrimination [33]. While the AUC has 
been recently criticised (e.g. [34]) it still provides an informative measure of model 
discriminatory performance [35]. Additionally, we provide omission (fraction of observed 
presences projected as absences) and commission (fraction of observed absences projected as 
presences) rates. The threshold for occurrence and non-occurrence projections corresponds to 
the prevalence of model-building data [36]. A certain threshold was selected to delineate 



potential future range borders for calculating the projected proportion of percentage gain and 
loss (e.g. [37]). 

All analyses were performed with R 2.12.0 [38]. In addition to the provided R packages we 
used the BIOMOD package version 1.1–5 [39] and the package hier.part version 1.0–3 [40]. 
Spatial data were processed with ArcGIS 9.3.1. 

Biotic Interaction Approaches 

For modelling the distribution of A. viridis, the following three approaches were applied: (1) 
‘overlap approach’, (2) ‘explanatory variable approach’, and (3) ‘reference area approach’ 
(Figure 2). For the ‘overlap approach’, the current and potential future distributions of A. 
viridis and S. aloides were modelled individually with climatic variables. The projected future 
occurrences of both species were intersected, retaining only those areas where both species 
are projected to occur mutually in the future assuming unlimited dispersal (Figure 2A). The 
‘explanatory variable approach’ includes for the modelling of the dragonfly, beside the 
climatic variables, the modelled current and projected future occurrence probability of the 
egg-laying plant in Europe (Figure 2B). For the ‘reference area approach’ the distribution 
model of A. viridis was calibrated on the current occurrence of S. aloides and then projected 
on Europe. This model thus describes the conditional probability of finding A. viridis under 
particular climate conditions, given that S. aloides is present. To yield the unconditional 
occurrence probability for A. viridis, this conditional occurrence probability was multiplied 
with the modelled occurrence probability of S. aloides (Figure 2C). 

 
Figure 2 
Conceptual framework of the three applied approaches for modelling biotic 
interactions. 

Comparison of Interaction Approaches 

We compared the results of the three approaches according to four criteria: First, we evaluated 
the modelling performance with the criterion AUC on test data. Second, we analysed the 
spatial projections. For this purpose, we identified the two most important climatic variables 
determining the current distribution of A. viridis in Europe using the variable importance 
function in BIOMOD. We then plotted the projected future losses and gains of all three 
approaches within the range of these two variables to assess where (in terms of the variable 
range) the projections differ. 

Third, potential non-analogue climatic conditions between current conditions and future 
projections in time were calculated for the ‘reference area approach’, which is particular 
susceptible to this phenomenon as it restricts the climate space used for model fitting of the 
dragonfly species to that space occupied by the egg-laying plant. Non-analogue climate 
demands caution in the interpretation of the results [41]. Potential non-analogue climate was 
determined by the Multivariate Environmental Similarity Surface (MESS) analysis [42]. The 
MESS analysis measures the similarity between the current observed climate used to train the 



model and the future projected climate for any grid cell. Negative values imply non-analogue 
climatic conditions. 

Finally, we analysed the main source of variation in modelling results, i.e. either modelling 
algorithm or biotic interaction approach, using hierarchical partitioning. This method 
measures the contribution of each applied variable, independently and in conjunction with the 
other variables, to the total variance of a regression model and provides its relative 
importance. The nine modelling algorithms and three biotic interaction approaches resulted in 
27 different future projections. These were analysed by calculating the difference between the 
amount of gained sites (number of projected future suitable grid cells where the species is 
currently absent) and the amount of lost sites (number of projected future unsuitable sites 
where the species is currently present) relative to the number of currently occupied sites [43]. 
These values were related to uncertainty factors (modelling algorithm, biotic interaction 
approach) using a linear model with a Gaussian error distribution. 

Go to: 

Results 

Projected Geographical Changes 

Modelling the future European distribution of A. viridis solely with climatic information leads 
to a projected northward range expansion of this species (Figure 3A). Overall, a substantial 
range gain is projected for A. viridis (+1069%) assuming unlimited dispersal ability. 

 
Figure 3 
Projected potential future distributions of Aeshna viridis in Europe assuming unlimited 
dispersal. 

Including the biotic interaction with S. aloides leads to a smaller projected range expansion, 
irrespective of the particular biotic interaction approach. With the ‘overlap approach’, the 
overlapping area of both species is projected to increase. The projected overlapping region 
concentrates around the Baltic Sea in the future with core areas in North Germany/Denmark, 
Poland, Southeast Sweden, and Estonia/Latvia/South Finland (Figure 3B). The projected gain 
of area amounts to 860% compared to the current range of A. viridis assuming unlimited 
dispersal. 

With the ‘explanatory variable approach’, the dragonfly is projected to gain, similar to the 
‘overlap approach’. The overall projected gain is, however, larger than with the ‘overlap 
approach’ (+984%, unlimited dispersal). The potential climatically suitable area of the 
dragonfly is mostly distributed around the Baltic Sea with core areas in North 
Germany/Denmark, Southeast Sweden and Estonia/Latvia/South Finland (Figure 3C). Some 
more potentially suitable areas are projected in Finland, Sweden and Poland than in the 
overlap approach. 



The ‘reference area approach’ projected the smallest gain of suitable area in the future: The 
amount of the projected gain accounts for 402% with unlimited dispersal. The projected area 
is more fragmented and contracted around the Baltic Sea than with the other approaches 
(Figure 3D). 

For the ‘reference area approach’, climatic similarity between calibration and projection 
region was determined by MESS analysis. Non-analogue climate can be identified along the 
Mediterranean coast, in the Alps and in the alpine parts of Northern Scandinavia (Figure S1). 
Projections of the species' climatic suitability into these regions must be interpreted with 
particular caution. 

Comparison of Interaction Approaches 

All approaches showed high discriminatory model performance according to AUC, ranging 
from 0.88 to 0.94 (Table 1). Nevertheless, AUC values differ considerably between the 
approaches, especially between the ‘reference area approach’, which yielded the lowest AUC 
value of 0.88, and the others. The other approaches yielded higher and more similar values. 
Concerning omission and commission rates the ‘explanatory variable approach’ showed the 
lowest omission error, but the highest commission error compared to all other approaches 
(Table 1). 

 
Table 1 
Model performance and occurrence thresholds of the applied approaches. 

Similarly, the differences in spatial patterns between the approaches are small but not 
negligible. The variable importance function in BIOMOD revealed the variables sum of 
equilibrium evapotranspiration in the vegetation period (March-September) and mean 
precipitation in July as the most important variables explaining the current distribution of A. 
viridis in Europe. For the ‘overlap approach’ most of the projected gaining points cover the 
range between 40 and 90 mm precipitation in July and 300 and 600 mm equilibrium 
evapotranspiration sum in the vegetation period (Figure 4). Losses are mainly projected 
between 600 and 700 mm equilibrium evapotranspiration sum in the vegetation period. The 
‘explanatory variable approach’ shows a similar pattern. But in contrast to the ‘overlap 
approach’ additional gains are projected in the range of 600 and 700 mm evapotranspiration 
sum in the vegetation period and 90 till 140 mm precipitation in July. For the ‘reference area 
approach’ projected gains and losses cover similar ranges with precipitation in July mainly 
between 50 and 90 mm and equilibrium evapotranspiration sum in vegetation period between 
450 and 550 mm representing a narrower range than the two other approaches. Compared to 
the current distribution (Figure S2) all biotic interaction approaches project gains in grid cells 
with climatic conditions that are currently not populated by A. viridis. 



 
Figure 4 
Projected future losses and gains of the current distribution of Aeshna viridis in Europe. 

Regarding the contribution of algorithm and approach to the overall uncertainty, the main part 
of explained variation stems from the modelling algorithm (99.3%), and only a small part is 
attributed to the modelling approach (0.7%). 
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Discussion 

Projected Changes in Spatial Distribution Patterns 

The projected range changes for A. viridis up to 2021–50 were similar independent of the 
applied method for incorporating biotic interactions – namely ‘overlap’, ‘explanatory 
variable’ and ‘reference area approach’ – and of the modelling result for the target species A. 
viridis only. All model results projected a range expansion. However, smaller percentage 
gains were projected when biotic interactions were included. Similar results were found in a 
study where biotic variables were included in niche models for a butterfly and a bird species 
[44]. There, habitat availability was also reduced compared to a climate-only model although 
the species’ ranges generally declined. In our case, the essential egg-laying plant is projected 
to increase its range northwards, which could favour the spread of A. viridis. 

The populations at the tail end of the distribution are regarded to be crucially important for the 
survival of a species due to high levels of regional genetic diversity and local adaptations 
[45]. The loss of genetic diversity, as expected through climate change, could mean the loss of 
potentially adaptive alleles leading to a lower adaptation potential and therefore to a higher 
extinction probability [46]. Here, A. viridis seems not to be affected by a loss of genetic 
diversity as range losses at the southern range margin are rarely projected. In this case, the 
projected range concentration around the Baltic Sea and its potential as leading edge for 
northward-directed range expansions might be a primary focus of nature conservation. 
However, a secondary focus on regions where a distribution loss might occur may be 
beneficial to maintain genetic diversity and local adaptation possibilities. 

Another study showed that the incorporation of biotic interactions into species distribution 
modelling has an effect on the projections of the potential future distribution of a species [9]. 
They tested a modelling approach similar to our ‘explanatory variable approach’ with the 
result that the consideration of the host plant of Parnassius mnemosyne affected the projection 
of the species’ future potential distribution and significantly improved model performance. In 
our study, we could partly confirm this finding for a dragonfly and its specific egg-laying 
plant. The incorporation of the interaction affected the future spatial projections, although the 
performance criterion AUC did not improve. Other authors could also demonstrate an 
improvement of model performance with the inclusion of biotic interactions [47]. In addition, 
they suggest that species interactions may significantly affect distributions on macro-
ecological scales at least for boreal birds. 



Our expectation that a strong spatial mismatch between A. viridis and S. aloides might occur 
in the future is not supported by the modelling results. All applied modelling approaches 
resulted in remaining overlapping areas and showed similar tendencies in projected range 
losses and gains. Beside this spatial congruence a temporal mismatch could occur, which is 
not considered so far. Field studies could already prove temporal mismatches caused by 
climate change for different species with both positive (i.e. range expanding) (e.g. [10]) and 
negative (i.e. range declining) (e.g. [48]) effects on the studied populations. However, we 
suggest for our case that such a temporal mismatch is unlikely as A. viridis is not dependent 
on a specific stage of S. aloides (such as flowering), which is only available for a short time, 
but is rather dependent on the occurrence of the plant in general. 

A host plant change as currently observed for the butterfly Aricia agestis in Great Britain and 
therewith a facilitation of range expansion [49] could be imaginable. However, a change of 
the egg-laying plant of A. viridis seems unlikely. Though A. viridis occasionally uses other 
plants, such as Typha spp. and Sparganium spp., only S. aloides provides shelter for the larvae 
against fish predation [14]. In a predation experiment they revealed a significant higher 
survival of larvae in tanks with S. aloides than in tanks without this plant. 

Interaction Approaches 

The hypothesis that the three biotic interaction approaches differ considerably in their 
performance and their projected extent of range change is only partly supported by our results. 
The AUC values differed between the approaches to a varying extent, but all approaches 
exhibited high model performance. However, the value of the performance criterion did not 
improve with the inclusion of the host plant as additional predictive variable. Omission and 
commission rates were relatively small to moderate but nevertheless differed between 
approaches. The climate-only model of A. viridis yielded both a low omission and 
commission rate whereas the other approaches differed more in these rates. As an extreme 
example, the ‘explanatory variable approach’ had the lowest omission but the highest 
commission rate. 

The projected geographical range changes were similar, concentrating the future potential 
suitable habitat around the Baltic Sea. All approaches projected range expansions in the north 
of the current distribution approving the recent findings of poleward range expansion of 
Odonata (e.g. [50], [51]). Additionally, the current distribution gaps of A. viridis in Central 
and Northern Europe could be closed provided that suitable habitat is available. Nevertheless, 
there were some geographical differences distinguishing the outcomes of the three biotic 
interaction approaches. The question is how important these differences are on the applied 
spatial scale. At a finer scale, other factors than climate, such as land use and habitat 
fragmentation, play a more important role for species performance [8] overruling the 
projected range changes and necessitating a more detailed look at the projected regions. 

The projected losses and gains depending on the two most important variables and biotic 
interaction approach differ considerably. These differences may be caused by the different 
ways S. aloides affects the distribution of A. viridis in the approaches. Projected range gains 
in grid cells with currently unoccupied climatic conditions by A. viridis can be attributed to S. 
aloides. The egg-laying plant currently occurs in habitats with an equilibrium evaporation 
sum in the vegetation period up to approximately 800 mm and a mean precipitation in July 
between approximately 10 and 160 mm. 



Limitations 

Absence data can be ambivalent, i.e. indicating unsuitable habitat or habitat that is suitable but 
unoccupied [5]. Further, for cryptic species or species that are difficult to detect in the field 
recorded absences might not be ‘real’ absences since the chance that the species occurs in a 
grid cell but is not detected is very high. Otherwise, presence-only data (such as museum 
data) often have strong sampling biases. Additionally, presence-only distribution modelling 
requires background (or pseudo-absence) data. The selection of such background data can 
influence model parameterization and therewith the accuracy of model projections [52]. Still, 
more detailed data is rarely available at continental scales. 

Biotic interactions may play a minor role on a continental scale and climate seems to be the 
most important factor determining the distribution of species [8]. However, in Europe the 
spatial distribution of A. viridis is controlled by the occurrence of S. aloides, and is thus 
crucial at this spatial scale. In another study the incorporation of biotic interactions at macro-
scales significantly improved projections of species distributions [47] and therewith partly 
disproved the minor importance of biotic interactions on larger macro-scales. Hence, it seems 
appropriate to include the biotic interaction between A. viridis and S. aloides in species 
distribution modelling even at a continental scale. 

A study about uncertainty in the model-building process determined model algorithm and data 
quality as the most influential factors [53]. Similar to these results, here the main source of 
uncertainty is the modelling algorithm. We dealt with this uncertainty by using an ensemble 
modelling approach giving mean values of the projections over all modelling algorithms. The 
variation explained by the approach to incorporate biotic interactions is minimal, suggesting 
that the choice of a particular approach is not a significant source of prediction uncertainty. 
However, the incorporation of biotic interactions improves the model ability to explain the 
data variance. 

The MESS analysis [42], comparing the novelty of climate between projected and calibrated 
space, revealed a large extent of non-analogue climate. While the ‘reference area’ approach is 
conceptually appealing, as it allows separating the effect of climate and occurrence of the host 
plant, the restriction of the model calibration area to the current occurrence of the host plant 
increases the extent of novel climate. The ensemble modelling and the threshold method for 
calculating presence-absence points from occurrence probabilities applied in this study 
reduced the effect of extreme projections. Nevertheless, the issue of non-analogue climate has 
to be kept in mind, especially when applying other modelling techniques that are more prone 
to make extreme predictions. We recommend a visualization of the different projections of the 
single algorithms to detect such projections into regions with non-analogue climate 
conditions. 

All species distribution modelling approaches depend on the availability, quality and 
timeliness of distribution data [54]. The spatial resolution of distribution data provided by the 
EU 25 member states (report obligation of the Habitats Directive 2007) differs between 
countries. Non-EU countries, such as Switzerland, Norway, Ukraine or the Balkan States, are 
not listed in the Habitats Directive. Leaving occurrences in these countries out of 
consideration may distort the species distribution model. However, the availability of such 
data is often limited. European distribution data of plants, not listed in the Habitats Directive 
and not yet covered by the Atlas Florae Europaeae, can be most often only found in ‘old’ 
maps of distribution atlases, not necessarily representing the current distribution and mostly 



afflicted with sampling biases. The distribution data of S. aloides are from 1986 and may 
over- or underestimate the current distribution in Europe and therewith influence modelling 
results. Especially, the ‘reference area approach’ might be susceptible to incomplete 
occurrence data because of its model calibration on the range of the plant. Comparing the 
current distributions of both species A. viridis seems to occur where S. aloides does not exist. 
Two reasons for this are imaginable: Observed individuals of A. viridis are vagrants and do 
not breed there or the distribution map of S. aloides is incomplete at these places. 
Nevertheless, these databases provide a substantial and valuable source of distribution data in 
Europe. 

Beside the well-studied uncertainties in forecasting species distribution modelling, such as the 
choice of model algorithm, climate model, emission scenario and so on, the selection of a 
certain threshold to convert occurrence probabilities into presence-absence points has 
remained a topic of debate. Several studies compared the performance of different thresholds 
(e.g. [36], [55], [56]) leading to different and even contrasting results in which threshold 
method performs best. We decided to use a threshold that equals the observed prevalence of 
the species in Europe. This has been shown to perform well with comparable high values for 
sensitivity, specificity and kappa [36]. However, this threshold resulted in low kappa values in 
another study [56]. Moreover, a recently published article documents that the choice of 
threshold is the second highest source of uncertainty following the modelling method [57]. 
Consequently, the choice of threshold can alter future range projections. In an extreme case, 
future projections may be reversed leading to projected range contractions (Figure S3) where 
with another threshold the range is projected to increase (Figure 3). Hence, it is important to 
evaluate the ecological plausibility of modelling results after deciding for a certain threshold. 

All three here evaluated approaches for incorporating biotic interactions are static, i.e. they do 
not explicitly model range dynamics. Range dynamics of interacting species may lead to 
temporal mismatches, i.e. even if climatic conditions were suitable for both species, a lower 
range filling capacity of the host plant would limit the range expansion of the dependent 
species. Several approaches have been developed towards dynamic species distribution 
models, e.g. by coupling stochastic (meta-)population models with temporally varying species 
distribution models [58], [59] or dynamic range models [60]. To our knowledge, these 
approaches have not yet been expanded to take biotic interactions into account. 

Implications for future Modelling of Biotic Interactions 

Many species, for example insect species of the EU Habitats Directive such as A. viridis, have 
highly specialised habitat requirements and fragmented distributions. Therefore, it is unlikely 
that they can colonise regions that become climatically favourable under climate change in the 
future. Hence, projections of the future distribution considering dispersal limitations and 
explicitly incorporating range dynamics may be more realistic for such species. 

However, here we showed smaller range expansions to occur under a full dispersal scenario, 
only by including biotic interactions. Therefore, we conclude that for specialised species it is 
relevant to include biotic interactions in distribution modelling. Previous species distribution 
models without considering biotic interactions may have overestimated range gains and are 
over-optimistic in assessing future distributions. 

Go to: 



Supporting Information 
Figure S1 

Results of the MESS-analysis for the ‘reference area approach’. Light grey indicates a 
climatic similarity (values between 0 and 100) between calibrated (restricted to the current 
occurrence of Stratiotes aloides) and projected area (Europe). Dark grey areas (values <0) 
indicate novel climate conditions in the projected area. 

(PDF) 

Click here for additional data file.(388K, pdf) 

Figure S2 

Distribution of Aeshna viridis depending on the two most range-influencing climatic 
variables. The current distribution in Europe comprises 658 observed presence points. The 
vegetation period ranges from March until September. 

(PDF) 

Click here for additional data file.(2.5M, pdf) 

Figure S3 

Projected potential future distributions of Aeshna viridis in Europe assuming unlimited 
dispersal. The threshold for occurrence and non-occurrence projections was selected such 
that the resulting prevalence (i.e. fraction of occupied sites) equalled the mean predicted 
occurrence probability. A) A. viridis without interaction, occurrence threshold: 0.12, AUC: 
0.93. B) Overlapping area of the potential future distributions of A. viridis and S. aloides, 
occurrence threshold: 0.12 (A. viridis), 0.44 (S. aloides), AUC: 0.93 (A. viridis), 0.94 (S. 
aloides). C) Considering the modelled occurrence probability of S. aloides in Europe as 
additional explanatory variable beside climate. Occurrence threshold: 0.10, AUC: 0.92. D) 
Potential future distribution of A. viridis in Europe applying the ‘reference area approach’. 
The model for A. viridis was calibrated within the distribution area of S. aloides. The 
modelled future occurrence probabilities of both species were multiplied. Occurrence 
threshold: 0.10, AUC: 0.88. All modelling results are based on an ensemble modelling with 
nine model algorithms with the climate model HadCM3 and the emission scenario A2 for the 
time period 2021–50. 

(TIF) 

Click here for additional data file.(933K, tif) 
Go to: 

Acknowledgments 
We thank the Federal Agency for Nature Conservation Germany for the coordination of the 
project “Impacts of climate change on fauna, flora and habitats as well as adaptation strategies 



of nature conservation” (FKZ 3508 85 0600). Further, we thank two anonymous reviewers for 
their helpful comments on an earlier version of this manuscript. 

Go to: 

Funding Statement 
The work was funded by the Federal Agency for Nature Conservation Germany (FKZ 3508 
85 0600) (www.bfn.de). This publication was funded by the German Research Foundation 
(www.dfg.de) and the University of Bayreuth (www.uni-bayreuth.de) in the funding 
programme Open Access Publishing. The funders had no role in study design, data collection 
and analysis, decision to publish, or preparation of the manuscript. 

Go to: 

References 
1. Parmesan C, Ryrholm N, Stefanescu C, Hill JK, Thomas CD, et al. (1999) Poleward shifts 
in geographical ranges of butterfly species associated with regional warming. Nature 399: 
579–583 
2. Hickling R, Roy DB, Hill JK, Fox R, Thomas CD (2006) The distributions of a wide range 
of taxonomic groups are expanding polewards. Glob Change Biol 12: 450–455 
3. Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of 
species associated with high levels of climate warming. Science 333: 1024–1026 [PubMed] 
4. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple 
habitat models. Ecol Lett 8: 993–1009 
5. Elith J, Leathwick JR (2009) Species distribution models: Ecological explanation and 
prediction across space and time. Annu Rev Ecol Evol Syst 40: 677–697 
6. Araújo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J 
Biogeogr 33: 1677–1688 
7. Davis AJ, Jenkinson LS, Lawton JH, Shorrocks B, Wood S (1998) Making mistakes when 
predicting shifts in species range in response to global warming. Nature 391: 783–786 
[PubMed] 
8. Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the 
distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12: 361–
371 
9. Araújo MB, Luoto M (2007) The importance of biotic interactions for modelling species 
distributions under climate change. Glob Ecol Biogeogr 16: 743–753 
10. Menéndez R, González-Megías A, Lewis OT, Shaw MR, Thomas CD (2008) Escape from 
natural enemies during climate-driven range expansion: a case study. Ecol Entomol 33: 413–
421 
11. Schweiger O, Settele J, Kudrna O, Klotz S, Kühn I (2008) Climate change can cause 
spatial mismatch of trophically interacting species. Ecology 89: 3472–3479 [PubMed] 
12. Jentsch A, Kreyling J, Elmer M, Gellesch E, Glaser B, et al. (2011) Climate extremes 
initiate plant regulating functions while maintaining productivity. J Ecol 99: 689–702 
13. Liu Y, Reich PB, Li G, Sun S (2011) Shifting phenology and abundance under 
experimental warming alters trophic relationships and plant reproductive capacity. Ecology 
92: 1201–1207 [PubMed] 



14. Rantala MJ, Ilmonen J, Koskimäki J, Suhonen J, Tynkkynen K (2004) The macrophyte, 
Stratiotes aloides, protects larvae of dragonfly Aeshna viridis against fish predation. Aquat 
Ecol 38: 77–82 
15. Suutari E, Rantala MJ, Salmela J, Suhonen J (2004) Intraguild predation and interference 
competition on the endangered dragonfly Aeshna viridis. Oecologia 140: 135–139 [PubMed] 
16. Smolders AJP, Roelofs JGM, DenHartog C (1996) Possible causes for the decline of the 
water soldier (Stratiotes aloides L.) in the Netherlands. Arch Hydrobiol 136: 327–342 
17. Dijkstra K-DB, Lewington R (2006) Field guide to the dragonflies of Britain and Europe. 
Including western Turkey and north-western Africa. Dorset: British Wildlife Publishing. 
320p. 
18. Preston CD, Croft JM (1997) Aquatic plants in Britain and Ireland. A joint project of the 
Environment Agency Institute of Terrestrial Ecology and the Joint Nature Conservation 
Committee. Colchester: Harley Books. 365p. 
19. Suutari E, Salmela J, Paasivirta L, Rantala MJ, Tynkkynen K, et al. (2009) 
Macroarthropod species richness and conservation priorities in Stratiotes aloides (L.) lakes. J 
Insect Conserv 13: 413–419 
20. Sugier P, Lorens B, Chmiel S, Turczyński M (2010) The influence of Ceratophyllum 
demersum L. and Stratiotes aloides L. on richness and diversity of aquatic vegetation in the 
lakes of mid-eastern Poland. Hydrobiologia 656: 43–53 
21. EIONET (2009) Central Data Repository(CDR) - http://cdr.eionet.europa.eu/ 
22. Hultén E, Fries M (1986) Atlas of North European vascular plants: north of the tropic of 
cancer. 1: introduction taxonomic index to the maps 1–996: Maps 1–996. Königstein: Koeltz. 
498p. 
23. Mitchell TD, Carter TR, Jones P, Hulme M (2004) A comprehensive set of high-
resolution grids of monthly climate for Europe and the globe: the observed record (1901–
2000) and 16 scenarios (2001–2100). Tyndall Centre Working Paper 55. 
24. Spangenberg JH (2007) Integrated scenarios for assessing biodiversity risks. Sust Dev 15: 
343–356 
25. Settele J, Hammen V, Hulme P, Karlson U, Klotz S, et al. (2005) Alarm: Assessing Large-
scale environmental Risks for biodiversity with tested Methods. GAIA 14: 69–72 
26. Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol 
Evol 22: 42–47 [PubMed] 
27. Ruete A, Yang W, Bärring L, Stenseth NC, Snäll T (2012) Disentangling effects of 
uncertainties on population projections: climate change impact on an epixylic bryophyte. Proc 
R Soc B 279: 3098–3105 [PMC free article] [PubMed] 
28. Thuiller W (2003) BIOMOD - optimizing predicitions of species distributions and 
projecting potential future shifts under global change. Glob Change Biol 9: 1353–1362 [PMC 
free article] [PubMed] 
29. Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD - a platform for 
ensemble forecasting of species distributions. Ecography 32: 369–373 
30. Marmion M, Parviainen M, Luoto M, Heikkinen RK, Thuiller W (2009) Evaluation of 
consensus methods in predictive species distribution modelling. Divers Distrib 15: 59–69 
31. Thuiller W, Lafourcade B, Araújo M (2009) ModOperating Manual for BIOMOD. In: 
Thuiller W, Lafourcade B (2010) BIOMOD: species/climate modelling functions. R package 
version 1.1–5/r221. URL http://R-Forge.R-project.org/projects/biomod/ 
32. Araújo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species-climate 
impact models under climate change. Glob Change Biol 11: 1504–1513 
33. Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240: 1285–1293 
[PubMed] 



34. Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the 
performance of predictive distribution models. Glob Ecol Biogeogr 17: 145–151 
35. Reineking B, Schröder B (2006) Constrain to perform: Regularization of habitat models. 
Ecol Model 193: 675–690 
36. Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in 
the prediction of species distributions. Ecography 28: 385–393 
37. Bean WT, Stafford R, Brashares JS (2012) The effects of small sample size and sample 
bias on threshold selection and accuracy assessment of species distribution models. 
Ecography 35: 250–258 
38. R Development Core Team 2010. R: A language and environment for statistical 
computing, Vienna, Austria. Available: http://www.R-project.org/ 
39. Thuiller W, Lafourcade B (2010) BIOMOD: species/climate modelling functions. R 
package version 1.1–5/r221. Available : http://R-Forge.R-project.org/projects/biomod/ 
40. Walsh C, MacNally R (2008) hier.part: Hierarchical Partitioning. R package version 1.0–
3. 
41. Fitzpatrick MC, Hargrove WW (2009) The projection of species distribution models and 
the problem of non-analog climate. Biodivers Conserv 18: 2255–2261 
42. Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. 
Methods Ecol Evol 1: 330–342 
43. Buisson L, Thuiller W, Casajus N, Lek S, Grenouillet G (2010) Uncertainty in ensemble 
forecasting of species distribution. Glob Change Biol 16: 1145–1157 
44. Preston KL, Rotenberry JT, Redak RA, Allen MF (2008) Habitat shifts of endangered 
species under altered climate conditions: importance of biotic interactions. Glob Change Biol 
14: 2501–2515 
45. Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge 
matters. Ecol Lett 8: 461–467 [PubMed] 
46. Jump AS, Marchant R, Peñuelas J (2009) Environmental change and the option value of 
genetic diversity. Trends Plant Sci 14: 51–58 [PubMed] 
47. Heikkinen RK, Luoto M, Virkkala R, Pearson RG, Körber J-H (2007) Biotic interactions 
improve prediction of boreal bird distributions at macro-scales. Glob Ecol Biogeogr 16: 754–
763 
48. Both C, Bouwhuis S, Lessells CM, Visser ME (2006) Climate change and population 
declines in a long-distance migratory bird. Nature 441: 81–83 [PubMed] 
49. Pateman RM, Hill JK, Roy DB, Fox R, Thomas CD (2012) Temperature-dependent 
alterations in host use drive rapid range expansion in a butterfly. Science 336: 1028–1030 
[PubMed] 
50. Hickling R, Roy DB, Hill JK, Thomas CD (2005) A northward shift of range margins in 
British Odonata. Glob Change Biol 11: 502–506 
51. Hassall C, Thompson DJ (2008) The effects of environmental warming on Odonata: a 
review. Int J Odonatol 11: 131–153 
52. VanDerWal J, Shoo LP, Graham C, Williams SE (2009) Selecting pseudo-absence data 
for presence-only distribution modeling: How far should you stray from what you know? Ecol 
Model 220: 589–594 
53. Dormann CF, Purschke O, García MárquezJR, Lautenbach S, Schröder B (2008) 
Components of uncertainty in species distribution analysis: a case study of the Great Grey 
Shrike. Ecology 89: 3371–3386 [PubMed] 
54. Bittner T, Jaeschke A, Reineking B, Beierkuhnlein C (2011) Comparing modelling 
approaches at two levels of biological organisation – Climate change impacts on selected 
Natura 2000 habitats. J Veg Sci 22: 699–710 



55. Jiménez-Valverde A, Lobo JM (2007) Threshold criteria for conversion of probability of 
species presence to either-or presence-absence. Acta Oecol 31: 361–369 
56. Freeman EA, Moisen GG (2008) A comparison of the performance of threshold criteria 
for binary classification in terms of predicted prevalence and kappa. Ecol Model 217: 48–58 
57. Nenzén HK, Araújo MB (2011) Choice of threshold alters projections of species range 
shifts under climate change. Ecol Model 222: 3346–3354 
58. Keith DA, Akçakaya HR, Thuiller W, Midgley GF, Pearson RG, et al. (2008) Predicting 
extinction risks under climate change: coupling stochastic population models with dynamic 
bioclimatic habitat models. Biol Lett 4: 560–563 [PMC free article] [PubMed] 
59. Anderson BJ, Akçakaya HR, Araújo MB, Fordham DA, Martinez-Meyer E, et al. (2009) 
Dynamics of range margins for metapopulations under climate change. Proc R Soc B 276: 
1415–1420 [PMC free article] [PubMed] 
60. Pagel J, Schurr FM (2012) Forecasting species ranges by statistical estimation of 
ecological niches and spatial population dynamics. Glob Ecol Biogeogr 21: 293–304 

 
Articles from PLoS ONE are provided here courtesy of Public Library of Science 
 



 
Lister Hill National Center for Biomedical Communications • U.S.National Library of 
Medicine • 8600 Rockville Pike,Bethesda,MD 20894  
Privacy • Accessibility • Freedom of Information Act • Frequently Asked Questions 
• Contact Us  
Open-iSM and the Open i logo are service marks of HHS.  



 
 


