

Environmental risk management of red mud contaminated land

Katalin Gruiz, Viktória Feigl, Orsolya Klebercz, Attila Anton and Emese Vaszita <u>Gruiz@mail.bme.hu</u> http://enfo.agt.bme.hu/drupal/en/gallery/2472

Ajka Hungary October 2010

The failure of the NW corner of the Ajka alumina plant red mud depository resulted in the release of 800 000 m³ of highly caustic red mud suspension, which engulfed the downstream villages of Kolontár, Devecser, Somlóvásárhely.

10 people have died, 150 were injured.400 houses were destroyed.Ecosystem of creeks, rivers, wetlands and terrestrial areas was damaged.10 000 ha agricultural land was impacted.

Characteristics of the dam: statics problems

The material of the dam: fly ash with puzzolanic-activity, forming a concretelike material, stabile but not flexible (low tensile strength).

Layered bedrock: Triassic carbonates (dolomite) overlain by a fluvial sequence of marls, clays (prone to slipping when swollen) and interbedded fine sands.

An exterior non-permeable subsurface dam/wall was build in the 90's as a barrier to protect surface and subsurface waters from alkaline leachate. The second dam retained alkaline leachate wetting the marl and clay layers permanently.

Retrospective characterization of the dam statics

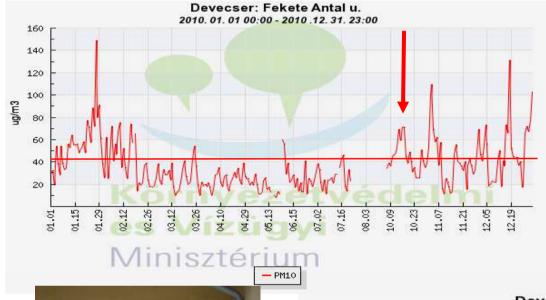
Dam Mud

Results: 2003–2010 ENVISAT data were processed and the rate of the vertical movement calculated. The broken corner submerged 12–15 mm/year (violet), while the surrounding was stabile (green).

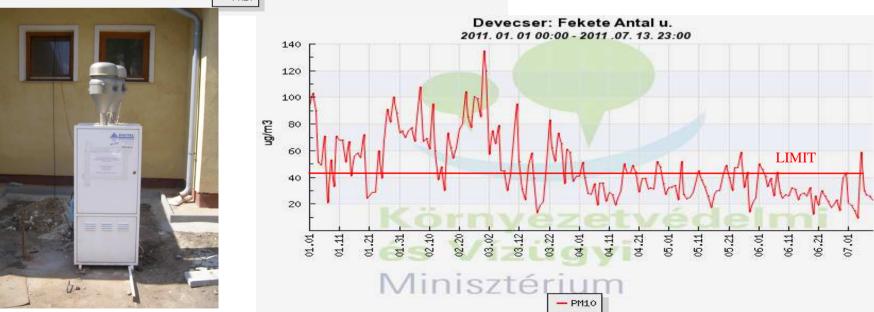
Environmental risk management

1. Catastrophe response:

Protecting human life, animals and other values


- 2. Risk mitigation by rapid measures
- 3. Final risk reduction
 - Creating the conceptual risk model Site assessment
 - Preliminary risk assessment: scoring Detailed risk assessment: quantitative Evaluation of the risk reduction options ERA, SEA
 - Implementation of the RRMs
 - Monitoring on the long term
 - Verification
 - Risk communication

Risk scores of some selected scenarios


D 1		Risk score Risk		Action necessary?	
Evalu	ated risk scenario	max.100	characterization		
1. Re	d mud layer on soil: infiltrated alkaline solution,				
desicc	ated red mud				
1.1.	Below 5 cm thick red mud layer	63	High risk	Action required	
1.2.	5–10 cm thick red mud layer	74	Very high risk	Action required	
1.3.	10–20 cm thick red mud layer	85	Very high risk	Action required	
1.4.	Above 20 cm red mud layer	91	Very high risk	Action required	
2. Re	d mud removal: caustic solution infiltrated, solid				
red m	ud layer removed				
2.1.	Below5 cm thick red mud layer	14	No risk	No action required	
2.2.	5–10 cm thick red mud layer	19	No risk	No action required	
2.3.	10–20 cm thick red mud layer	38	Low risk	Not likely required	
2.4.	Above 20 cm red mud layer	44	Medium risk	Likely required	
3. Red	I mud incorporated into soil				
3.1.	Below5 cm thick red mud layer	16	No risk	No action required	
3.2.	5–10 cm thick red mud layer	25	Low risk	Not likely required	
3.3.	10–20 cm thick red mud layer	41	Medium risk	Likely required	
3.4.	Above 20 cm red mud layer	49	Medium risk	Likely required	
4. Soi	with planted vegetation				
4.1.	Removed red mud layer >10 cm	21	No risk	No action required	
4.2.	Mixed in red mud layer <5 cm	14,5	No risk	No action required	
4.3.	Mixed in red mud layer 5–10 cm	20,5	Low risk	Not likely required	
5. Dis	5. Disposal of the removed red mud		Very high risk	Action required	

Quantitative risk assessment

Dust inhalation

Prognosis was: no increased risk for the summer of 2011. Mesured data validated the prognosis: PM10 is under the Hungarian screening value

13 monitoring stations for PM

Caustic effect on humans

Inhaled NaOH was calculated in a worst case scenario, assuming the highest dusting rate and 10% NaOH content in the fugitive dust. $RCR_{inh} = 1/200$ compared to the 2 mg/m³ occupational exposure limit. $RCR_{inh} = 1/1000$ compared to the acute inhalation limit of 10 mg/m³.

Dermal irritation and corrosion

Red mud /risk scenario	Maximu	RCR _{dc}	Verbal risk
	m pH		characterization
Freshly discharged red mud	>13	RCR _{dc} >10	Significant
Red mud on soil: after 5 months	12.5	RCR _{dc} =5	Significant
Red mud on soil: after 10 months	12.3	RCR _{dc} =3	Significant
Red mud removal from soil surface	8.0	RCR _{dc} ~0	Negligible
Red mud incorporation, max. 10%	8.8–9.9	RCR _{dc} =0.001-	Negligible
		0.01	
Disposal of removed red mud	11–12.3	RCR _{dc} =0.1–3	Moderate-signif.

Risk of pH and Na on soil quality and function

Alkalinity: risk of reduced soil life

Red mud removal on the field: pH 8.00±1.0, negligible risk.

Incorporating 5% RM: pH 8.8±0.5, moderate risk.

Revegetation lowered the pH with a value of 1.7 in lab experiments.

Plant growth is inhibited by a pH above 9.5

Incorporation of 10% red mud is at the boundary of the acceptable risk.

Na-content: risk of sodification

Red mud / scenario	Na	RCR	Verbal risk	7 month after removal	
iteu muu / seenamo	7 months	7 months	characterization		
Red mud on soil	3100	RCR _{Na} =3.4	High	Not acceptable, remove	
Removal from soil	200	RCR _{Na} =0.1	Negligible	Unlimited use	
Incorporation 5%	420	RCR _{Na} =0.2	Moderate	Unlimited use	
Incorporation 10%	800	RCR _{Na} =0.8	Moderate	Usable	
Incorporation 10% low	1600	$\mathbf{PCP} = 16$	Cignificant	Use specific plants, apply	
attenuation	1000	RCR _{Na} =1.6	Significant	monitoring and control	
Deposition of red mud	15 000	DCD _15	Vorshich	Isolate by vegetation,	
with soil	15 000	RCR _{Na} =15	Very high	if plants are able to grow	
Deposition of RM	38 600	RCR _{Na} =40	Very high	Encapsulate	

Risk posed by toxic metal contamination on soil

Scenario	As mg/kg	Cr mg/kg	Ni mg/kg	Se mg/kg	RCR _{As}	RCR _{Cr}	RCR _{Ni}	RCR _{Se}	Verbal characteriz	Action required			
Site spec. soil SC	25	75	40	3									
Sewage sludge SC	75	1000	200	-									
Reference soil av.	11	29	18	1,8	0,44	0,39	0,45	0,6	Small				
RM on top*	38	20	20	20	420	100	not	1,5	5,6	4,5	0	Significant	Remove RM or
RM mixed in**		420	180	det.	0,5	0,4	0,9	0	Moderate	mix into soil			
Removal of RM	14,8	31	25	1,6	0,6	0,4	0,6	0,5	Moderate	Unlimited use			
5% RM	9,8	38	19	1,2	0,6	0,5	0,5	0,4	Moderate	Unlimited use			
10% RM	11,5	58	29	1,2	0,8	0,8	0,7	0,4	Moderate	Unlimited use			
Soil:RM = 2:1	20	157	66	1	0,8	2,1	1,6	0,3	Significant	Lmtd plant use			
Soil:RM = 1:1	25	225	100	0,6	1	3	2,5	0,2	Significant	Lmtd plant use encapsulation			

* Considered as soil ** Considered as sewage sludge

Inhibitory effect of red mud on soil ecosystem members

Test	% red mud in soil	% red mud in soil	% red mud in soil	
	causing 10% inhibition	causing 20% inhibition	causing 50% inhibition	
Soil microorganisms	30	35	40	
Seed germination	13	18	25	
Plant shoot growth	5	8	18	
Plant root growth	6	8	15	
Collembolan lethality	15	20	25	

