

Introduction to GIS

dr Siki Zoltán <mark>siki@agt.bme.hu</mark>

- What is GIS
- Digital maps
- Relational databases
- GIS systems
- Application areas

http://www.agt.bme.hu

Components of GIS

Unity of hardware, software, data and experts to collect, store, maintane and analyse spatial data

Vector vs raster data

Vector

- •Smaller data sets
- •,,,Unlimited" resolution
- •Complex data structure

Raster•Huge data sets•Limited resolution

•Simple data structure

Hybrid model

Digital map

Map – scaled down, generalized representation of objects on the surface of the Earth

Digital map - numeric description of a map (co-ordinates, lines, etc.)

Graphical elements of digital maps

Point (symbol)Line, polylineTextPolygon

Creation of digital maps

Topology

•Neighbourhood and continuity of map elements

- •Topology invariant from the co-ordinate system
- •Used in analyses e.g. find shortest route

FNODE_	TNODE_	LPOLY	RPOLY	LENGTH	ID
1	5	1	-1	287	1
1	2	2	1	82	2
2	5	5	1	143	3
8	9	5	7	223	4
9	10	6	7	43	5
3	6	4	5	195	6
3	4	2	4	51	7
4	7	-1	4	204	8
7	10	-1	6	185	9
11	11	3	5	101	10
8	10	7	-1	264	11
5	8	5	-1	102	12
1	4	-1	2	248	13
2	3	2	5	213	14
6	9	6	5	59	15
6	7	4	6	89	16

Difference between CAD and GIS data structures

CAD (DXF, DWG, DGN)

- •Construction of plans
- •Several different element type
- •One file several layers
- •Spagetti data model
- •Geometry and display attributes
- •Attributes are optional

•3D

GIS (Shape, TAB, GeoBase)

- •Query and analyze
- •Point, polyline, polygon, (text)
- •One layer several files
- •Topological data model
- •Geometry only
- •Attributes are integral part
- •2D, 2.5D

Projection systems

•Reference system Sphere, ellipsoid Datum

•Target surface Cone Cylinder Plane

•Type of projection angles preserved (comform) areas preserved

Connection between graphical and attribute data

GIS systems

Topologic data model, network and polygon topology

Graphic data and display attributes (e.g. color, line type, etc.) are separated

Map and attribute editing tools

Analyses tools

Questions answered by GIS

•Position – What is here?

•Condition – Where are …?

•Trends – What has changed?

•Pattern – What spatial patterns are?

•Modelling – What would be if ...?

Tools to answer questions I.

•Selection

- •Based on database table (Where are ...?) SQL queries
- Geometric conditions (What is here?)
 By point
 Within a circle
 Within a rectangle
 Within a polygon
 Contains entire, partly within, contains centroid
- •Spatial join, between two layers

Tools to answer questions II.

•Buffers

- Near to or far from something Buffer distance
 - •Constant
 - •Attribute value
 - •Multiple rings

Tools to answer questions III.

- •Overlay (between a polygon and an other layer)
 - Union Intersection
- •Other operations
 - Clip
 - Merge
 - Dissolve
- •Thematic maps

Analysis example

Task: find the area suitable for ...

Conditions:

Near to a lake or river (10 km) Soil type (8) Sunny hours > 1800 hours / year Area > 15 km²

Neccessary data/layers:

Rivers and lakes map Soil map Sunny hours map

Solving the task

Results of an analysis

Raster analysis

Derive a new grid from one or more existing ones Operation between the cells at the same position

Grid algebra

Aritmetic operators +, -, *, / Functions

"No data" value, any operators with "No data" value results "No data"

Digital Terrain Models (DTM)

TIN or GRID

Delaunay triangulation

Trinagular network based on 3D points Sum of the perimeter of triangles is minimized

Creation algorithm:

Starting with an optimal network of three points, new points are inserted

Optimum condition: no point inside the circle around any triangle

GIS world todays

OGC www.ogc.org

Free GIS tools

www.freegis.org

Internet map servers

www.agt.bme.hu

www.esri.com www.autodesk.com www.mapinfo.com www.bentley.com ...