Direct toxicity assessment methods, evaluation, interpretation

Katalin Gruiz

Budapest University of Technology and Economics

DTA in contaminated land management

Content of the presentation

- Basics of DTA in contaminated land management
- Methods and tools
- Evaluation, endpoints
- Integrated assessment
- Interpretation
- Uncertainties, statistics

Models applied in environmental assessment

Distance from the real ecosystem

Biodegradability: QSAR \rightarrow standardized tests \rightarrow simulated degradation \rightarrow real degradation Toxicity: QSAR \rightarrow standardized toxicity tests \rightarrow simulation \rightarrow controlled real environment

Most appropriate model: regulatory RA/RM, contaminated sites RA/RM, global RA/RM AquaConsoil 2015

Concepts for ecosystem management Application of DTA

Benefits of DTA

The adverse effects of environmental samples differ from the aggregated adverse effects extrapolated from chemically determined/analyzed contaminants.

Why?

- 1. The analytical programme does not include all possible chemicals having adverse effects;
- 2. Analytical methods cannot measure some contaminants in their effective concentration range
- 3. Chemical availablility (extraction by solvents) differs from bioavailability;

DTA measures:

- the toxicity of entire effluents (wwtp, leachates, runoffs);
- characterizes sediment and soil toxicity with high environmental realism;
- accounts for the aggregated effect of chemical mixtures;
- may provide results including different exposure routes and effects;
- measures a response proportional to the bioavailable fraction;
- accounts for the effects of not analyzed and chemicals of not known effects,
- ensures safety by identifying toxicity of samples despite complying with chemicalbased limits.

DTA in soil testing

DTA usability

- Direct toxicity assessment (DTA) ensures high environmental relevance, representing all possible interactions between contaminants, ecosystem members and soil. The result aggregates the effects of all contaminants present in the sample.
- DTA can simulate different soil uses and real, multiple exposures.
- Difficulty: directly measured toxicity of environmental samples cannot be expressed in concentration, thus it does not fit the chemistry based risk assessment model and the concentration-based screening values cannot be applied.

Direct toxicity assessment applications

1. Non-targeted screening: not known or uncertain contaminants and site history (general toxicity on soil ecosystem);

2. Targeted screening: known contaminants / specific effects / contaminant-specific biosensors, etc.

3. Integrated evaluation by paralel toxicity testing, chemical analysis and biological/ecological and toxicological characterization

AquaConsoil 2015 Integrated evaluation

Can chemistry truely model the biological response? Example of a zinc-lead mine tailing dump

Flotation tailing covered by soil without isolation.

Layer	рН	Total metal content (mg/kg)			
		Zn	Pb	Cu	
Black soil	4.7–5.2	603	186	72	
Grey tailing	7.0–8.0	31,858	4,971	2,450	

Test method:	Alliivibrio fischeri		
	dehydrogenase	& shoot growth	luminescence
Black soil	Very toxic	Тохіс	Very toxic
Grey tailing	Non-toxic	Slightly toxic	Non-toxic

Bioaccumulation	Zn	Cu	Cd
Species	(mg/kg)	(mg/kg	(mg/kg
Achillea millefolium	255	17	2.4
Agrostis sp.	410	32	6.3
Carex sp.	355	55	3.0
Echium vulgare	607	45	5.0
Phalaris canadiensis	145	4.0	0.5
Phragmites australis	768	41	0.7
Populus sp.	1158	13	19.5
Silene alba	694	50	2.6
Silene vulgaris	506	21	4.6
Tussilago falifara	569	39	8.8
QC for forage*	150-200	15–50	1.0
for vegetable**	20	10	0.5

AquaConsoil 2015

Plant toxicity compared to chemically measured metal content at a flooded site

Evaluation and interpretation of direct toxicity test results and their use in risk management

Endpoints:

effective soil/groundwater dose (sD/sV)

- no effect dose or volume (NOEsD, NOEsV)

Representation of the ecosystem:

- 3 or more testorganisms from minimum of 3 trophic levels

- average of three representative effect
- the smallest of three testorganisms
- effect distribution of more (7 or more) testorganisms and reading an optional value from the distribution curve
- **Target toxicity**: average or smallest NOEsD of the three effect values
 - EsD₅ or EsD₂₀
 - any value of the distribution curve

RCR = risk characterization ratio = measured toxicity/target toxicity Risk assessment: excess risk or RCR based on comparison with the ref.

Risk-benefit assessment!

Risk reduction measure: based on excess risk, RCR and other, e.g. socioeconomic values.

Inhibition rate as function of groundwater volumes

Inhibition rate as the function of soil sample mass and the test end points

No effect dose \rightarrow Reduction rate to 'no effect' = Necessary rate of removal/clean-up Target = EsD₂₀ \rightarrow reduction to 20% inhibition rate \rightarrow Necessary rate of removal/clean-up

Artificial cover layers of red mud deposites

Average samples from historical cover layers of 6 reservoirs. Site specific criterion: not more than 20% inhibition

Soil sample	Collembo	ola lethality	Effective sample proportion (SP)	Excess risk
	Inhibition rate [%] of the original sample	Sample dose causing 20% inhibition LsD ₂₀ [g]	SP causing LsD ₂₀ [%]	How many times of the reference SP
1	70	1,2	6	17
2	68	6,3	32	3
3	13	>20	>100	0
4	28	17,0	85	1.2
5	23	19,0	95	1.1
6	40	15	75	1.3

Next steps: more testorganisms and more detailed assessment, ecosystem assmnt, hot spot identification, comparison to chemical analytical results

New artificial soil to cover red mud deposites

Assessment of the mixtures before emplacement

Soil sample	Soil proportion resulting 20% inhibition			Average	RCR	RCR	
	(SP%)			SP		no wheat	
	Bacterial	Mustard	Wheat	Collem		Sample SP/	Sample SP/
Code	lumines	shoot	shoot	bola	%	reference SP	reference SP
	cence	growth	growth	growth			
7	23	68	44	5,5	35	3	3
8	4	4,4	1,2	3,5	3,3	30	25
9	>100	54	2,2	38	49	2	1.5
10	>100	4,0	2,8	2	27	4	3
11	85	>100	>100	>100	96	1	1
12	>100	>100	>100	>100	100	1	1
13	38	80	20	>100	60	2	1.4
14	23	64	25	2,5	29	3	3
15	22	64	25	9	30	3	3
Cover/0.2 m	>100	>100	>100	85	96	1	1
Cover/0.4 m	79	>100	>100	90	92	1	1
Cover/0.6 m	>100	>100	>100 ^{Aqua}	>100	100	1	1

Comparison of DTA and chemical analytical results

Soil sample	RCR	RCR		
	based on DTA	based on chemical analys		
		of EPH, PAH, M10		
	How many	How many	How many	
Code	times of	times of	times of	
	target EsD ₂₀	SQCecol	SQCindust	
7	3	2	<1	
8	30	10	3	
9	2	2	<1	
10	4	3	1.5	
11	1	1	<<1	
12	1	1	<<1	
13	2	1	<1	
14	3	3	1.1	
15	3	3	1.2	
Cover/0.2 m	1	1	<<1	
Cover/0.4 m	1	1	<<1	
cover/0.6 m	1	1	015 <<1	

Interpretation:

Agreement between chemical andecotox ass.: both + or both –; Disagreement: + / -+E /-C: not analysed; -E/+C: not toxic or not bioavailable; Common quantitative ground is: excess risk (RCR)

Toxicity equivalencing method

Advantages

Toxicity results can be converted into concentrations;

The toxicity of any mixture with uncertain availablity can be expressed in concentration of the reference material. Our references: Cu for metals and 4 chloro-phenol for organics;

DTA results can be fit into the chemical model based ERA and ERM;

Makes the ecotox results understandable for non-ecotoxicologists;

Its application is recommended for exploration and non-targeted screening in a tiered assessment;

The shape of the dose–response curve is also informative.

Comparison of testorganisms to reference may also be informativ.

Disadvantages

Characterize only the scale of toxicty of other substabces than reference; The shape of the dose–response curve of the reference may differ from the sample.

Equivalencing

Advantages and uncertainties in DTA of soil

Beneficial, because characterize the toxicity and risk of environmnetal samples without specifying the actual contaminants and interactions with high environmnetal realism.

Application: – The methods and tool are available

- Evaluation and interpretation is not yet well established
- Professionals, thinking mechanically according to the chemical model, also understand ecotoxicity results.
- It can be directly linked to risk management and decision making, and this way to the more efficient risk management of contaminated land.

Measurement and evaluation:

- Inhibition rate or dose-response function can be measured
- Single species or more species can be applied in paralel
- Multispecies test methods / microcosms can be applied

Uncertainties:

- Environmental variability and sampling;
- Uncertainties of the test methods, very few standard methods;
- Uncertainties in interpretation.

Statistical evaluation:

- Hypothesis testing for the determination of NOEC;
- Regression methods for EC_5 and EC_{20} , EC_{50} .

Thank you for your attention!

AquaConsoil 2015

Concepts for ecosystem management

AquaConsoil 2015

An example

Creating a cover layer on a mine waste dump site: made of artificial soil for plant cultivation. A mixture of debris, organic wastes and komposts, wwtp sludge, fly ash, lime slurry, paperpulp waste, construction waste, dredged sediment, etc., in a mixture of continuously changing quality.

Land use: restricted area in a forest

Target: isolation by natural plant coverage

Accepted inhibition: 20%.

Multicriteria analysis for the comparison of quantitative ecotox and chemical analytical data.

AquaConsoil 2015

DTA in environmental risk management

Chemical and biological availability

Need for DTA in soil testing: bioaccessibile and availablie portion of contaminants in soil greatly differs from the total.

Overlap of chemical and biological methods is casual /random.

This sheme changes from substance to substance.

AquaConsoil 2015

Equivalencing

Methods, equipments, endpoints

Test type: laboratory, rapid *in situ*, real time, online;

Test set-up: biosensor, bioassay, microcosm, fiel assessment, etc.

Test organisms: soil bacteria, algae, fungi, single cell animals, nematodes, plants, insects (springtails, aunts, pinceb, spiders, woodlice), worms (nematodes, Eisenia sp.), birds, mammals. The soil in whole: metagenom, metatranscriptomics, metabolic activities (respiration, nitrification, sulphate redustion), adaptation, resistance, etc.

Equipment: lab, mobile, handheld, locally deployed or remote sensors with data loggers and telecommunication;

Endpoints: from enviromics through metabolic activities to population indicators;

- The properly selected end point should have a diagnostic value and should be in close relationship with the hazardous effect and risk;
- The measured end point should be consistent with the study goal & qualitativeness;
- Direct and indirect effects can be measured, such as genetic, metabolic reproductive, growth or lethal effects;
- The measured end points should represent adequate sensitivity and the response time should be as short as possible;
- High signal/background ratio is desired;
- The implementation, evaluation and interpretation should be easy and practical.

In situ /real-time toxicity measuring methods

In situ site investigation may ensure better fit to the specific soil management and greater flexibility in the field work compared to laboratory based solutions. Real-time toxicity values make automatic control and regulation possible.

Some tools for in situ toxicity measurements:

- Mobile versions of laboratory tests, test kits, conserved test organisms;
- Biosensors / microprobes for measuring respiration and contaminant specific biochemical responses, biospecific metabolic products;
- DNA and other omics probes for diversity testing;

Mobile luminometers for measuring bioluminescence *in situ*

Field applicable equipments

• Caged test organisms;

• Field micro and mezocosms: cotton strip, litter bag, pitfall traps, bait lamina, soil lysimeters, avoidance tests, field asessment of species densitiy, diversity.

Underground deployed field lysimeter

Above ground field lysimeter

AquaConsoil 2015

Can chemistry truely model the biological response?

Toxic metals contaminated soil. Approximation of the biological response by:

- sequential multiple metal extraction with separate fractions: several methods resulting 3, 4 or 5 fractions, e.g. BCR, SEE (8 fractions)
- simulations, biomimetic extractants, etc.

But: generalization and interpretation is still fragile

Plant toxicity compared to chemically measured metal content at a flooded site

