B.22. RODENT DOMINANT LETHAL TEST

METHOD 1.

1.1. Introduction

See General Introduction Part B.

1.2. Definition

See General Introduction Part B.

1.3. Reference substances

None.

downloaded from a previous page in this site

þe

can

2

corresponding

Testing Methods and the

Annex V

A complete list of

that only

Please notice

1.4. Principle of the test method

Dominant lethal effects cause embryonic or foetal death. Induction of dominant lethals by exposure to a chemical substance indicates that the substance has affected germinal tissue of the test species. It is generally accepted that dominant lethals are due to chromosomal damage (structural and numerical anomalies). Embryonic death if females are treated may also be the result of toxic effects.

Generally, male animals are exposed to the test compound and mated to untreated virgin females. The various germ cell stages can be tested separately by the use of sequential mating intervals. The increase of dead implants per female in the treated group over the dead implants per female in the control group reflects the post-implantational loss. Pre-implantational loss can be estimated based on corpora lutea counts or by comparing the total implants per female in treated and control groups. The total dominant lethal effect is the sum of pre- and post-implantational loss. The calculation of the total dominant lethal effect is based on comparison of the live impiants per female in the test group to the live implants per female in the control group. A reduction in the number of implants at certain intervals may be the result of cell killing (i.e. of spermatocytes and/or spermatogonia).

1.5. Quality criteria

None.

1.6. Description of the test method

Preparations

When possible, test substances should be dissolved or suspended in isotonic saline. Chemicals insoluble in water may be dissolved or suspended in appropriate vehicles. The vehicle used should neither interfere with the test chemical nor produce toxic effects. Fresh preparations of the test chemical should be employed.

Test conditions

Route of administration

The test compound should generally be administered only once. Based on toxicological information a repeated treatment schedule can be employed. The usual routes of administration are oral intubation or intraperitoneal injection. Other routes of administration may be appropriate.

Experimental animals

Rats or mice are recommended as the test species. Healthy fully sexually mature animals are randomized and assigned to treatment and control groups.

Number and sex

An adequate number of treated males should be used, taking into account the spontaneous variation of the biological character being evaluated. The number chosen should be based on the pre-determined sensitivity of detection and power of significance. For example in a typical test, the number of males in each dose group should be sufficient to provide between 30 and 50 pregnant females per mating interval.

Use of negative and positive controls

Generally concurrent positive and negative (vehicle) controls should be included in each experiment. When acceptable positive control results are available from experiments conducted recently in the same laboratory these results can be used instead of a concurrent positive control. Positive control substances should be used at an appropriate low dose (e.g. MMS, intraperitoneally, at 10 mg/kilogram) to demonstrate the test sensitivity.

Dose levels

Normally, three dose levels should be used. The high dose should produce signs of toxicity or reduced fertility in the treated animals. In certain cases a single high dose level may be sufficient.

Limit test

Non-toxic substances should be tested at 5 glkilogram on a single administration or at 1 g/kilogram/day on repeated administration.

Procedure

Several treatment schedules are available. Single administration of the test substance is the most widely used. Other treatment schedules may be used.

Individual males are mated sequentially to one or two untreated virgin females at appropriate intervals after treatment. Females should be left with the males for at least the duration of one oestrous cycle or until mating has occurred as determined by the presence of sperm in the vagina or by the presence of a vaginal plug.

The number of matings following treatment is governed by the treatment schedule and should ensure that all germ cell stages are sampled after treatment.

Females are sacrificed in the second half of pregnancy and uterine contents are examined to determine the number of dead and live implants. The ovaries may be examined to determine the number of corpora lutea.

2. DATA

Data should be tabulated to show the number of males, the number of pregnant females, and the number of non-pregnant females. Results of each mating, including the identity of each male and female, should be reported individually. For each female, week of mating, dose level received by the males, the frequencies of live implants and of dead implants should be recorded.

The calculation of the total dominant lethal effect is based on comparison of the live implants per female in the test group to the live implants per female in the control group. The ratio of dead to live implants from the treated group compared to the same ratio from the control group is analysed to indicate the post-implantation loss.

If the data are recorded as early and late deaths, the tables should make that clear. If pre-implantation loss is estimated, it should be reported. Pre-implantation loss can be calculated as a discrepancy between the number of corpora lutea and the number of implants or as a reduction in the average number of implants per uterus in comparison with control matings.

Data are evaluated using appropriate statistical methods.

Please notice that only European Community's legislation published in the paper editions of the Official Journal of the European Communities is deemed authentic. When preparing this document, care has been taken to ensure correctness of the text; nevertheless possibility of errors cannot be completely excluded, so differences may exist between this version and the one agreed and published in the paper edition of the Official Journal. In case of doubt the reader is advised to consult the

Official Journal. This method can be found in Dir 88/303/EEC (OJ L 133 1988). A complete list of Annex V Testing Methods and the corresponding OJ can be downloaded from a previous page in this site.

3. REPORTING

3.1. Test report

The test report shall, if possible, contain the following information:

-species, strain, age and weights of animals used, number of animals of each sex in experimental and control groups,

-test substance, vehicle, dose levels tested and rationale for dose selection, negarive and positive controls, toxicity data,

-route and treatment schedule,

-mating schedule,

-method used to determine that mating has occurred,

-time of sacrifice,

-criteria for scoring dominant lethals,

-dose/response relationship, if applicable,

-statistical evaluation,

- discussion of results,

-interpretation of results.

3.2. Evaluation and interpretation

See General Introduction Part B.

4. REFERENCES

See General Introduction Part B.