Land Contamination & Reclamation

Volume 17: Parts 3–4 November 2009

1.	INTRODUCTION TO THE SPECIAL EDITION Smart environmental management K. Gruiz and T. Meggyes	317
2.	ENVIRONMENTAL MANAGEMENT Efficient environmental management and MOKKA ¹ K. Gruiz	323
	Risk-based environmental management: end-user demand in Hungary ¹ Á. Czibók	327
	Efficient environmental management and MOKKA: the European context ² Y. Spira	331
	EURODEMO: end-user needs ² D. Edwards	335
	Risk-based environmental management and decision making ¹ 1. Zöldi	337
3.	ENVIRONMENTAL RISK MANAGEMENT AND DECISION MAKING Scientific and engineering 'improvement' of environmental risk management by MOKKA ¹	343
	 K. Gruiz Risk management and decision making in remediation option selection² S. Colombano, C. Merly and H. Gaboriau 	347
	Complex environmental risk management of a former mining site ^{1, 3, 4} K. Gruiz, E. Vaszita, Z. Siki, V. Feigl and F. Fekete	357
4.	SITE ASSESSMENT AND MONITORING TOOLS	070
	Integrated and efficient assessment of contaminated sites ¹ K. Gruiz	373
	Early warning and monitoring in efficient environmental management ¹ K. Gruiz	387
	Cyclodextrin-containing sensors to provide an early warning of contamination ¹ É. Fenyvesi and L. Jicsinszky	407
	Spatial modelling of contamination in a catchment area impacted by mining: a case study of the Recsk copper mine, Hungary ⁵ G. Jordan, A. Van Rompaev, A. Somody, U. Fügedi and A. Farsang	415

	Remote sensing as a promising tool for environmental assessment ¹ M. Szomolányi Ritvayné, G. Frombach, A. Nagy	425
	In situ site assessment: a short overview and description of the field-portable XRF and its application 1,3,4,6	433
	A. Sarkadi, E. Vaszita, M.Tolner and K. Gruiz Measuring adverse effects of contaminated soil using interactive and dynamic test methods ^{1,6} K. Gruiz, M. Molnár and V. Feigl	445
	Microcosm models and experiments: types and applications 1,3,4 K. Gruiz and E. Vaszita	463
	Complex leaching of metal-sulfide-containing mine waste and soil in microcosms ¹ E. Vaszita, J. Szabó and K. Gruiz	465
	Bioavailability- and bioaccessibility-dependent mutagenicity of pentachlorophenol (PCP) ¹ C. Hajdu, K. Gruiz and É. Fenyvesi	475
	Chemical stabilization of toxic metals in soil microcosms ^{1,3,4} V. Feigl, N. Uzinger and K. Gruiz	485
	Laboratory testing of biodegradation in soil: a comparison of chemical and biological methods M. Molnár, É. Fenyvesi, K. Gruiz, G. Illés, Z. Nagy, C. Hajdu and P. Kánnai	497
5.	ENVIRONMENTAL RISK ASSESSMENT	
	Environmental data interpretation and risk assessment ¹ K. Gruiz	511
	GIS-based quantitative hazard and risk assessment of an abandoned mining site ^{1,3,4} E. Vaszita, Z. Siki and K. Gruiz	515
6.	DEVELOPMENT OF REMEDIATION TECHNOLOGIES	
	Contaminated-site remediation: role and classification ¹ K. Gruiz	535
	Soil bioremediation – a bioengineering tool ¹ K. Gruiz	545
	In situ soil remediation: the reactor approach ¹ K. Gruiz	555
	Combined chemical and phytostabilization: field application ^{1,4} V. Feigl, A. Anton, F. Fekete and K.Gruiz	579
	Cyclodextrin-enhanced soil-remediation technologies ¹	587
	É. Fenyvesi, M. Molnár, L. Leitgib and K. Gruiz Development of cyclodextrin-enhanced soil remediation: from the laboratory to the field ¹	601
	M. Molnár, L. Leitgib, É. Fenyvesi and K. Gruiz	001
	Demonstration of soil bioremediation technology enhanced by cyclodextrin ¹ É. Fenyvesi, L. Leitgib, K. Gruiz, G. Balogh and A. Murányi	613
	Bioremediation of areas polluted with chlorinated and non-chlorinated hydrocarbons ¹ A.A.M. Langenhoff	621
	Practical experience with <i>in situ</i> remediation technologies – application problems and solutions ² <i>L. Wimmerova</i>	629
	Enhancing the efficacy of permeable reactive barriers ¹	637
	 T. Meggyes, M. Csõvári, K.E. Roehl and FG. Simon EURODEMO – environmental efficiency of remediation² 	653
	D. Müller and H. Gaboriau Verification tool for in situ soil remediation ¹	663
	K. Gruiz, M. Molnár and É. Fenyvesi EURODEMO – improving the uptake of efficient soil and groundwater remediation technologies ² Y. Spira, D. Edwards, J. Henstock, H. Gaboriau, C. Merly, D. Müller, V. Birke and H. van Duijne	687
7.	MOKKA DATABASES	
	Web-based information system and decision-support tool: the structure and use of the MOKKA IT tool ¹ K. Gruiz	697
	The informatics background to the MOKKA project ¹ Z. Siki	705
	Promoting knowledge and learning through remediation demonstration projects ² J. Henstock	709

EUGRIS – more than a database ⁵ <i>J. Frauenstein and P. Bardos</i>	713
The interface between the MOKKA decision-support tool and EUGRIS: an integrated approach J. Fehér, P. Bardos, G. Fehér and Zs. Dargai	
SUMMARY	

8. SUMMARY

Summary 731

K. Gruiz and T. Meggyes

The papers in this special edition originated in the following projects and events:

- 1. MOKKA (Innovative Decision Support Tools for Risk Based Management of the Environment in Hungary)
- 2. EURODEMO (European Co-ordination Action for Demonstration of Efficient Soil and Groundwater Remediation)
- 3. DIFPOLMINE (Diffuse Pollution from Mining Activities)
- 4. BANYAREM (Risk Reduction of Diffuse Pollution of Mining Origin)
- 5. MOKKA Conference
- 6. LOKKOCK (Development of Novel Soil Testing Methods in Support of Site-specific Risk Assessment).

The Nottingham Masters Course in Contaminated Land Management

Nottingham's unique part time hybrid MRes in Contaminated Land Management combines University attendance and distance learning to minimise time away from work. It is aimed at consultants, regulators, problem holders and research institutions from anywhere in the world. Modules are delivered over 2 years in 8 one week long blocks supported by distance learning and web based training materials.

Assess Investigate

Engage Reme

Remediate Regenerate

Our research and consultancy work, spanning contaminated land management and sustainable brownfield regeneration, allows us to offer relevant, vocational up to date education in:

- Site characterisation
- Risk assessment;
- Remediation strategy selection & verification;
- Sustainable urban regeneration
- Transferable professional skills;
- Policy and legislation.

For further details on studying and researching sustainable brownfield regeneration and risk based contaminated land management at Nottingham, please contact Professor Paul Nathanail CGeol SiLC:

paul@lgm.co.uk

http://www.nottingham.ac.uk/geography

Tel: +44 115 951 5575

