Experimental sites of the MTA ATK TAKI and research experiences

Márk Rékási

Experimental sites

Experimental site: Nagyhörcsök

Calcareous chernozem

Climateprecipitation (mm)500-600temperature °C (min/max)9.7 (-25/+35)

Soil properties

pH(H ₂ O)	7.6
pH(KCl)	7.1
Humus %	3.1
CaCO ₃ %	1.8
CEC meq/100g	32
Sand % (>0.05 mm)	17
Silt % (0.05-0.002 mm)	60
Clay % (<0.002 mm)	23
E-maning and a	

Experiments

- Since 1967. The effect and after-effect of fertilizers in different loads and ratios. I., II., III.
- Since 1973. The connection between the nutrient supply and fertility of the soil
- Since 1985. Development of different N-supply levels in soil
- Since 1989. The adsorption of K-fertilizer in soil
- Since 1991. Accumulation of heavy metals in the soil-plant-animal system
- Since 2003. Testing the fertilization recommendation system

Experiments: Nagyhörcsök

The connection between the nutrient supply and fertility of the soil (Kádár and Ragályi). Since 1973.

Experiment treatments (2 replications, 128 plots):

Treatment level	N (kg/ha) yearly	P ₂ O ₅ (kg/ha) in years: 1973, 1980, 1999.	K ₂ O (kg/ha) in years: 1974, 1980, 1984, 1986, 1999.	
0	0	0	0	
1	100	500	500	
2	200	1000	1000	
3	300	1500	1500	

Result: the long-term fertilization can drastically change the concentrations and ratios of elements in the grass. The N-fertilization was of vital importance, which increased the hay mass 5 times. The P-response was moderate while there were no K-responses at all.

Accumulation of heavy metals in the soil-plant-animal system. (Kádár and Rékási) Since 1991.

Treatments (2 replications, 104 plots): <u>Elements</u>: Al, As, Ba, Cd, Cr, Cu, Hg, Mo, Ni, Pb, Se, Sr, Zn. <u>Load levels</u>: 0, 90, 270, 810 kg/ha

Experimental site: Őrbottyán

Calcareous sandy soil

Climate

precipitation (mm)	550
temperature °C (min/max)	10.6 (-27/+40)

Soil properties

pH(H ₂ O)	7.7
pH(KCl)	7.6
Humus %	1
CaCO ₃ %	3.3
CEC meq/100g	11
Sand % (>0.05 mm)	81
Silt % (0.05-0.002 mm)	13
Clay % (<0.002 mm)	6

Experiments

- Since 1959. Effect of fertilization on the yield and nutrient uptake of a rye monoculture
- Since 1970. Effect of fertilization on the fertility of sandy soil
- Since 1985. Development of different N-supply levels in soil
- Since 1995. Accumulation of heavy metals in the soil-plant-animal system
- 2002 2010 Effect of composted slaughterhouse wastes and meat meal

Experiments: Őrbottyán

The effect of bioash and peat blend on soil and maize. (Anton, Uzinger, Rékási)

Results: The bioash+peat blend increased the soil AL-soluble K content and may make for an S source. The pH value of calcareous sand significantly increased. These favorable effects could not change the maize yield because of low precipitation. Control

24 t bioash+peat

Experimental site: Nyírlugos

Acidic sandy soil with alternating thin layers of clay substance

Climate	
precipitation (mm)	550-6
temperature °C	9.7
Soil properties	
	1.0
$pH(H_2O)$	4.9
pH(KCl)	4
Humus %	0.5
CaCO ₃ %	0
CEC meq/100g	5
Sand % (>0.05 mm)	85
Silt % (0.05-0.002 mm)	10
Clay % (<0.002 mm)	5

Experiments

Since **1962**. Effect of fertilization and liming on acidic sandy soil Since **2011**. Effect of alginite on the fertility of acid sandy soil

Experiments: Nyírlugos

Effect of fertilization and liming on acidic sandy soil. (Kádár)

One of the oldest field experiments in Hungary. At the start (in 1962 by István Láng) it was unique in the country. It had 512 plots for the investigation of different agrotechniques. Many hundred publications have been published about the results.

Treatments since 2001:

Treatment level	N (kg/ha)	P ₂ O ₅ (kg/ha)	K ₂ O (kg/ha)	Ca (kg/ha)	Mg (kg/ha)
0	0	0	0	0	0
1	50	60	60	100	40
2	100	120	120	200	80
3	150	180	180	400	-

N fertilisation: every year. P, K, Ca, Mg: every 5th year

Thank You for Your Attention!

